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LINEAR AND NONLINEAR DYNAMICS OF
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The dynamics of a cantilevered cylinder in axial flow are explored, by means of the equations
derived in Part 2 of this three-part study, and using as numerical tools the finite difference
method and AUTO in order to solve the discretized equations. The linear dynamics is
considered first, focusing on the effect of some key parameters on stability. Then, the nonlinear
dynamics is examined by means of concrete examples with parameters close to those in the
experiments of Part 1, by means of bifurcation diagrams, phase-plane plots and Poincar!ee
maps. The agreement between theory and experiment is qualitatively good and quantitatively
reasonable, in terms of the critical values for the various bifurcations, and the amplitudes and
frequencies of the motions observed. # 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The main purpose of this three-part paper is the re-examination of the linear
dynamics of a cantilevered cylinder in axial flow and the exploration of some aspects of
its nonlinear dynamics, as well as the comparison of both to experiments, some old,
some new.
The experimental results are presented in Part 1 (Pa.ııdoussis et al. 2002), and comparison

with linear theory is partly made therein, for convenience. The equations of motion are
derived in Part 2 (Lopes et al. 2002). Here, the bulk of the theoretical results are presented,
both linear and nonlinear, in Sections 3 and 4, respectively, followed by a comparison of
theory and experiments. In Section 4, the comparison of the thresholds of instability,
partly discussed in Part 1, is revisited, while comparison of distinctly nonlinear features of
the dynamics is done in this paper for the first time. Some introductory comments follow,
immediately below.
With the use of the model derived by Lopes et al. (2002), it is possible to study the

dynamics of the system from a nonlinear point of view. Indeed, with the nonlinear
equations, it is possible to find not only the different points of instability}the bifurcation
points}but also to determine the dynamical response beyond these points.
yPresently at EADS Launch Vehicles, Les Mureaux Center Directorate, B.P. 3002, 66 Route de Verneuil, 78133
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Traditionally, for linear theory, i.e., using only the linear equations of motion, two types
of bifurcation may occur: ‘‘divergence’’ and ‘‘flutter’’. Divergence corresponds to a static
loss of stability, and might be associated with a pitchfork bifurcation. Physically, the
cylinder loses its straight, undeformed configuration and it buckles as a column under
axial load. Divergence, being a static instability, is associated with zero frequency; such a
zero-frequency bifurcation could clearly also represent a static restabilization of the system
and a return to the trivial, undeformed configuration of the cylinder. Flutter, on the other
hand, represents a dynamic loss of stability, and is usually associated with a Hopf
bifurcation. The cylinder thereafter develops amplified oscillation of finite frequency}a
limit cycle.
Also possible by means of nonlinear theory is the prediction of divergence amplitudes

and limit-cycle amplitude and frequency, and how these vary with flow, and many other
quantitative post-bifurcation facets of dynamical behaviour.

2. THE ANALYTICAL MODEL

The equation of motion and boundary conditions have been derived by Lopes et al.
(2002). Using Galerkin’s method and the eigenfunctions fjðxÞ of a cantilever beam, they
have been reduced to a set of ordinary differential equations that take the following form:

Mij .qqj þ Cij ’qqj þ Kijqj þ rijkqj jqkj þ %ssijkjqj j ’qqk þ *ssijkqj j ’qqkj þ tijk ’qqj j ’qqkj þ aijklqjqkql

þ bijklqjqk ’qql þ gijklqj ’qqk ’qql þ Zijkl ’qqj ’qqk ’qql þ mijklqjqk .qql ¼ 0: ð1Þ

The indices i and j are integers ranging from 1 to N, where N represents the number of
comparison functions. The terms Mij, Cij, Kij correspond to the (linear) mass, damping
and stiffness matrices, while aijkl, bijkl, gijkl, Zijkl, mijkl , rijk, %ssijk, *ssijk, and tijk are related to the
nonlinear terms. They all depend on the different physical parameters, so the main task is
to solve equation (1) numerically as a function of the main system parameters, which are
introduced next.

2.1. Physical Parameters

For purposes of comparison with experiments, and in order to validate the theoretical
model, physical parameters corresponding to one particular system have been used as
much as possible. However, in order to give the theoretical work a broader spectrum and
to enable us to draw more general conclusions, some additional values have been
considered as well. The experiments have been fully described in Part 1 (Pa.ııdoussis et al.
2002) and have been conducted in a vertical water tunnel, using elastomer cylinders with
a rigid tapering end. The major physical parameters are as follows:

D ¼ 2�54	 10
2 m; L ¼ 0�520 m; rc ¼ 1 150 kg=m3; r ¼ 1 000 kg=m3;

A ¼ 5�07	 10
4 m2; m ¼ 0�582 kg=m; M ¼ 0�507 kg=m; EI ¼ 5�59	 10
2 Nm2;

ð2aÞ

where rc is the cylinder density, leading to the following dimensionless values:

U ¼
rA
EI

� �1=2
UL� 1�57U; b ¼

rA
mþ rA

� 0�47;

g ¼
ðm
 rAÞgL3

EI
’ 1�9; e ¼

L

D
� 20�47:

ð2bÞ

All symbols are defined in Part 2 (Lopes et al. 2002).
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Furthermore, we assume that w ¼ 1 and h ¼ 0, which corresponds to a cylinder in
unconfined flow, and that the friction coefficient cd ¼ 0. For convenience, the tapering-end
parameter f and the base drag coefficient cb are related as per Pa.ııdoussis (2002) by
cb ¼ 1
 f .
The tapering end is quasiellipsoidal, of length l. The function giving the relation between

the diameter and the curvilinear coordinates is DðsÞ ¼ D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 ðs
 Lþ lÞ2=l2

q
. So, for an

ellipsoidal end we have se ¼ 2
3
l and %sse ¼ ðp=4Þl, and for l=L ¼ 0�01 we obtain the

dimensionless values we � 6�67	 10
3 and %wwe � 7�85	 10
3 [see equations (65) and (68)
of Lopes et al. (2002) for definitions].
As the maximum flow velocity of the water tunnel is around 6m/s, the corresponding

dimensionless one, U, is around 10. Finally, in order to obtain the system period from the
dimensionless period, we use the following relationship:

t ¼ ½ðmþMÞ=EI �1=2L2t ¼ 1�19t: ð2cÞ

In subsequent sections, all parameters are dimensionless and are set to the values stated
above, unless otherwise specified.

2.2. Method of Solution

Depending on the type of analysis and results sought, two different numerical schemes
have been used. The first one is based on the Finite Difference Method (FDM) which has
been discussed in detail by Semler et al. (1996). It is an ‘‘initial-value problem solver’’,
which means that the system of equations is integrated numerically for one initial condition
at a time, and it is capable of reproducing the state of the system thereafter at any time, t.
The final steady-state represents a stable attractor, i.e., a physically possible state.
The second solution scheme involves the use of AUTO (Doedel & Kern!eeves 1986) which

is based on a collocation method. It is adapted to solving continuation and bifurcation
problems for differential equations. It determines the stability and the instability of static
and periodic solutions, by computing eigenvalues and Floquet multipliers of a known
solution.

2.3. Study of Convergence

As already mentioned, the original partial differential equation has been discretized using
the Galerkin method. This means that a sufficient number of comparison functions, N,
must be used in the discretization. Solutions of equation (1) need to be found for
increasing values of N till the solution does not change any more, both qualitatively and
quantitatively. It can be shown that this value varies with the different parameters, the
major one being the flow velocity. A complete convergence study has been performed by
Augu (1999). For the linear problem, it has been proved that for dimensionless flow
velocities U � 10, N ¼ 4 is a good approximation, while for 105U515, N ¼ 6 is
necessary; so, these are the values that are used in the stability analysis. As will be seen, the
situation is more complex for the nonlinear analysis, but generally six modes (N ¼ 6) are
used for U511, and 8–12 modes for U up to 15, in order to achieve proper convergence.y
yDepending on the ‘‘complexity’’ of the solutions (e.g., in the vicinity of doubly degenerate bifurcation points),

the number of modes required may be high, even at low flow velocities.
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3. STABILITY ANALYSIS

Local bifurcations occur when some eigenvalue of the linearized system crosses the
imaginary axis. It is therefore of interest to study the behaviour of the linearized system
about its equilibrium position as a function of the system parameters. Consequently, the
linear system represented by the matrices [M], [C], [K ] of dimension N is transformed into
a first-order system of dimension 2N, and the stability analysis is reduced to the evaluation
of the eigenvalues of the corresponding matrix: a Hopf bifurcation occurs when a pair of
complex conjugate eigenvalues crosses the imaginary-eigenvalue axis, and a pitchfork
bifurcation occurs when one eigenvalue becomes equal to zero.
In the system of equations, the following four main parameters are varied and the rest

are kept constant: the flow velocity, U, the free-end streamlining parameter, f , the mass
ratio, b, and the ratio of the friction coefficients cN=cT . In order to reduce the number of
figures in the paper, the influence of the different parameters has been summarized on
three different plots in which all parameters are fixed, except two: the flow velocity and one
of the three others. It is then possible to define areas of stability and instability that can
occur, either by divergence or by flutter. This is what is presented next.

3.1. Influence of f

This free-end shape parameter is related to how well streamlined the free end is: f ¼ 0
corresponds to a very blunt end, and f ¼ 1 to a perfectly well-streamlined tapering end.
However, the degree of streamlining also affects cb; thus, for a blunt end, the base drag is
higher. That is why we have taken cb ¼ 1
 f (Pa.ııdoussis 2002; Pa.ııdoussis et al. 2002). The
influence of f is shown in Figure 1. It can be seen that, depending on the value of f , the
stability of the system changes dramatically. For example, if f ¼ 0�30, the cylinder is
always stable, which means that it hangs vertically downwards, at its central equilibrium
state. For a slightly larger f , say f ¼ 0�35, first-mode divergence and second-mode flutter
are missed out (the lowest two loops of instability in the figure), and the first instability
encountered is third-mode flutter; there is also a higher-mode divergence within this flutter
boundary.
For higher f , e.g., f ¼ 0�6, the dynamical behaviour with increasing U is as follows: (i)

the system loses stability by divergence, (ii) it regains stability, (iii) it becomes subject to
second-mode flutter, (iv) it is restabilized, (v) it develops third-mode flutter; and (vi) more
complex dynamical behaviour then follows.y For still higher f , e.g., f ¼ 0�85, there is no
restabilization after the initial loss of stability.
A few distinctive regions need to be mentioned, because they give rise to some

interesting behaviour: (i) for f ¼ 0�82 (region A), the Hopf and the pitchfork bifurcations
occur simultaneously, and in such a situation, it is well-known that ‘‘nonstandard’’
behaviour might arise (Pa.ııdoussis & Semler 1993b); (ii) around regions B, the small loop
indicates the emergence of a new periodic solution prior to the disappearance of the
existing periodic solutions; hence, in these regions, various possible solutions coexist,
which may lead to ‘‘complicated’’ behaviour; and (iii) regions C correspond to the sudden
disappearance of Hopf bifurcations.
All these regions are ‘‘revisited’’ in Section 4 since they are ‘‘nonlinear’’ by nature, hence

belonging to the ‘‘nonlinear’’ dynamics section.
yFor this system, some of the higher-mode instabilities do materialize, as seen in Part 1, unlike the internal flow

system (Pa.ııdoussis 1998); hence this discussion is not entirely academic.



Figure 1. The dynamical behaviour of a cantilevered system (b ¼ 0�47, ecN ¼ ecT ¼ 0�5, g ¼ 1�9, cb ¼ 0�3,
we ¼ 0�00667, %wwe ¼ 0�00785, cd ¼ 0, w ¼ 1 and h ¼ 0), as a function of f ; light lines represent the bounds of

divergence, while heavier ones those of flutter.
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3.2. Influence of b

Figure 2(a) shows the effect of b on stability for a system with f ¼ 0�7 and otherwise the
same parameters, other than b, as in Figure 1. The shaded regions are stable. It is recalled
that, similarly to f , the possible range for b is 05b51}although, realistically, it is from
�10
3 for a light-gas flow over a heavy cylinder to �0�7 for a dense fluid flowing over a
hollow cylinder; for b > 0�7 approximately, the cylinder would begin to behave as a shell.
Consider the case of b ¼ 0�49 first. The system remains stable up to U ¼ 2�1, losing

stability by divergence; it is restabilized at U ¼ 5�2, and then loses stability by flutter at
U � 5�6; after that, it never regains stability, being subject to different types of flutter and
divergence. For larger b, there may be a third range of stability. For b50�38, on the other
hand, the system never regains stability after divergence, going directly into second- and
higher-mode flutter.y The horizontal line at U ¼ 9�6 represents the onset of the second
zone of divergence, and U ¼ 12�8 marks its cessation. Note that static instabilities are
independent of b.
The perplexing figure-of-eight behaviour is clarified in Figure 2(b), where it is seen how

the locus of the flutter mode evolves with varying f , initially as a single instability-
restabilization loop for f ¼ 0�5 and 0�6, to a figure-of-eight closed loop for f ¼ 0�8 in this
case of ecf ¼ 1 and g ¼ 0 [whereas ecf ¼ 0�5, g ¼ 1�9 in Figure 2(a), and the figure-of-eight
behaviour arises for f ¼ 0�7].
ySee also Section 4.4.



Figure 2. (a) The dynamical behaviour of the same system as in Figure 1, but with f fixed at f ¼ 0:�7 and b
variable; the shaded areas are zones of stability. (b) The dynamical behaviour of essentially the same system but
with ecN ¼ ecT ¼ 1 and g ¼ 0, for several values of f , as follows: }, f ¼ 0�5;– – –, f ¼ 0�6; }�}�}, f ¼ 0�:7;
� � �, f ¼ 0�8; 
��}��
, f ¼ 0�9. Note that the figure-of-eight in (b) is a dotted line (f ¼ 0�8), but the dots are

dense, and hence the line may appear to be continuous.
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3.3. Influence of cN=cT

The effect of f together with ecN and ecT for cN=cT ¼ 0�5, 1 and 2, is shown in Figure 3 for
divergence and Figure 4 for flutter. In Figure 3, in addition to the first divergence zone,



Figure 3. The effect of varying ecN on Ucd for various values of f , and b ¼ 0�47, w ¼ 1, cb ¼ 1
 f ,
we ¼ 0�00667, %wwe ¼ 0:00785, g ¼ 0, for (a) cN=cT ¼ 1

2
; (b) cN=cT ¼ 1; (c) cN=cT ¼ 2.

Figure 4. The effect of varying ecN on Ucf for second-mode flutter, for various values of f , and b ¼ 0�47,
w ¼ 1, cb ¼ 1
 f , we ¼ 0�00667, %wwe ¼ 0�00785, g ¼ 0, for (a) cN=cT ¼ 1

2
; (b) cN=cT ¼ 1; (c) cN=cT ¼ 2: }, flutter

via a Hopf bifurcation; - - -, ‘‘Pa.ııdoussis-type’’ flutter (Pa.ııdoussis 1998), shown for f ¼ 0�8, cN=cT ¼ 1
2
only.

DYNAMICS OF CYLINDERS IN AXIAL FLOW. PART 3 745
one can see a second and the beginnings of a third one; most clearly in Figure 3(a). On the
other hand, only the first (second-mode) flutter zone is shown in Figure 4.
In Figure 4(a, b) it would appear that flutter abruptly disappears for high enough ecN

when f is high. This is not true. The results in Figure 4 have been obtained using AUTO
(Doedel & Kern!eeves 1986), which can only detect flutter via a Hopf bifurcation. For high
ecN and f , however, the flutter is of the coupled-mode variety, i.e., the eigenvalues l do not
cross the imaginary axis with a nonzero complex part, but with two positive real
eigenvalues coalescing and giving rise to two complex-conjugate eigenvalues with positive
real part [Pa.ııdoussis (2002); cf. Pa.ııdoussis (1998, Figure 3.4(d))]. In one case, for f ¼ 0�8 in
Figure 4(a), the values of Ucf for coupled-mode flutter have been added (dashed line), and
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are seen to follow smoothly those for single-mode flutter. This is true for all cases, but the
calculations are tedious and the curves for other f have not been similarly extended.
It is clear from Figures 3 and 4 that, provided ecN is sufficiently small, say ecN50�2, its

effect on bothUcd andUcf is quite small, as to a lesser extent is the effect of varying cN=cT .
This, however, is not true for very small f and for larger values of ecN , when both ecN and
cN=cT influence the dynamics quite significantly.
In general terms, increasing ecN stabilizes the system in both divergence and flutter. For

high enough ecN and low enough f , divergence may be suppressed altogether, e.g., for
ecN ¼ 2 and f ¼ 0�5 in Figure 3(b, c). This is also true for flutter. Also, again generally,
increasing cN=cT stabilizes the system for divergence [e.g., cf. Ucd for ecN ¼ 2 and f ¼ 0�7
in Figure 3(a–c)]; this stabilization becomes more significant at higher values of ecN , e.g.,
for ecN ¼ 6. On the other hand, increasing cN=cT is destabilizing for flutter [e.g., cf.Ucf for
ecN ¼ 1 and f ¼ 0�6 in Figure 4(a–c)]. However, there are exceptions to these general
observations, e.g., because the instability curves become closed in some cases, as in Figures
3(b, c) and 4(b, c).

4. NONLINEAR ANALYSIS

Whereas linear analysis of the system can only predict the instabilities emanating from the
initial (trivial) configuration since it is based on small motions, nonlinear analysis may
provide a fuller, deeper understanding of the dynamics of the system, as discussed in detail
in Pa.ııdoussis (1998). For example, it is possible to determine if the bifurcations are sub- or
supercritical, to see if ‘‘secondary’’ bifurcations materialize, and to find the amplitudes of
the oscillations or of the static solutions. This information is usually graphically
summarized in a bifurcation diagram, where the amplitude of the system is plotted as a
function of one parameter, the flow velocity in this case. One such bifurcation diagram is
presented in Figure 5 where many interesting dynamical features may be observed.y The
convention in this figure is as follows: a solution on the x-axis represents the original
configuration, i.e., the inert cylinder hanging downwards. A nonzero solution can
represent either a nontrivial static equilibrium position (representing a buckled stationary
cylinder) or the amplitude of oscillation for flutter. Moreover, these solutions can be either
stable (drawn as heavy, continuous lines), meaning that they can be observed physically,
or unstable, in which case they are not physically possible (drawn as thin, continuous or
dotted lines).
As is well known, bifurcations are determined mathematically by the eigenvalues in the

case of a fixed point (denoted by l, with l ¼ 0 or l ¼ �io), and by the Floquet multipliers
in the case of a periodic solution (denoted by L, with L ¼ þ1;
1 or complex conjugate
with jLj ¼ 1). A complete description may be found in Pa.ııdoussis (1998). Figure 5 has been
obtained with AUTO, with N ¼ 6 for U59 and with N ¼ 8 for higher flow velocities, and
with the first generalized coordinate q1 being representative of the behaviour of the system.
In order to simplify the discussion, the results have been subdivided into different sections:
(i) U59, (ii) U > 9 and (iii) U � 8�6.
yFigure 5 has been obtained with the form of the equations obtained in Lopes et al. (1999); see Section 4.2 and

Appendix A of Part 2. As discussed in Part 2, because h ¼ 0 and g ¼ 1�9 in this case, the difference between these
results and those with the refined, corrected version of the equation of motion, equation (54) of Part 2, is expected

to be minimal; this figure was nevertheless not recalculated using equation (54), because of the heavy investment

of computational time this would entail.



Figure 5. Typical bifurcation diagram for b ¼ 0�47, f ¼ 0�7, g ¼ 1�9, ecN ¼ ecT ¼ 0�5, cb ¼ 0�3,
we ¼ 0�00667, %wwe ¼ 0�00785; cd ¼ 0, w ¼ 1 and h ¼ 0, with N ¼ 6 (for U59) and N ¼ 8 modes in the Galerkin
approximation, showing the first generalized coordinate, q1, as a function of U: ------------, stable solutions; },� � �,

unstable solutions.
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4.1. Dynamics for U59

From Figure 5, the dynamics of the system for U59 may be summarized as follows.
(i) As expected, the zero solution corresponding to the original equilibrium state is

stable; this is so, up to U ¼ 2�1. At this flow velocity, a supercritical pitchfork bifurcation
corresponding to one eigenvalue equal to zero (l ¼ 0) occurs, leading to divergence in the
first mode; q1 subsequently increases with U.
(ii) For U > 3 approximately, q1 begins to decrease, reaches zero, and then increases

again over a small range of U. This is because, with increasing U, the first-mode
divergence slowly changes into a second-mode-shape divergence. Subsequently, for
U > 5�25, the system is restabilized over a short range of flow velocities through a
subcritical pitchfork bifurcation (l ¼ 0 at U ¼ 5�25).
(iii) Almost immediately after, at U ¼ 5�5, the trivial ‘‘zero’’ solution loses stability

again through a supercritical Hopf bifurcation (l ¼ �io) which leads to flutter in the
second mode, corresponding to periodic oscillations around the origin.
(iv) This periodic solution becomes unstable through a torus bifurcation (two complex-

conjugate Floquet multipliers cross the unit circle, i.e., L ¼ a� ib with jLj ¼ 1) at U ¼
8�52 prior reaching the x-axis at U ¼ 8�97. The ‘‘jLj ¼ 1’’ bifurcation usually corresponds
to the appearance of a second frequency in the periodic response, i.e., to quasiperiodic
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solutions which cannot be ‘‘followed’’ by AUTO. Moreover, this unstable solution can
also be seen as emerging from a subcritical Hopf bifurcation of the origin at U ¼ 8�97, i.e.,
with l ¼ �io.
(v) Just before the aforementioned bifurcation, an unstable third-mode flutter solution

arises from a subcritical Hopf bifurcation of the trivial solution at U ¼ 8�94. This unstable
solution becomes stable at U ¼ 8�44 through a saddle-node bifurcation (L ¼ þ1), which
corresponds to a turning or limit point (Moon 1992). So, again, stable periodic solutions
may be seen.
A few additional comments on the dynamical behaviour of the system may be useful.
(i) Physically, and in general, the following sequence is predicted: (a) the stable initial

equilibrium (q1 ¼ 0) is succeeded by (b) static divergence in the first mode (q1a0), then it
is transformed to (g) divergence in the second mode; (d) this is followed by a return to
stability at the initial equilibrium (q1 ¼ 0), (e) oscillatory (periodic) motion in the second
mode and (z) oscillatory motion in the third mode. This is illustrated in Figure 6, where the
shape of the cylinder is shown as a function of time for some representative cases. For
U ¼ 3, the cylinder does not oscillate and its shape is similar to that of the first eigenmode
of a cantilevered beam [Figure 6(a)}corresponds to state (b)]. ForU ¼ 5, the amplitude is
much smaller and the shape is similar to the second eigenmode of a cantilevered beam,
there being an inflexion point in the curve [Figure 6(b)}state (g)]. For U ¼ 6, the cylinder
oscillates and the shape again corresponds to a second eigenmode [Figure 6(c)}state (e)].
Finally, for U ¼ 9, the cylinder oscillates with a high contribution of the third mode
[Figure 6(d)}state (z)].
(ii) The transition between the second and the third mode needs further discussion, since

more than one stable solution may exist over a small range of U. This is discussed in
Section 4.3.
(iii) From Figure 5, it is obvious that linear and nonlinear analyses yield different

results; this is the case because some bifurcations are subcritical, which means that
‘‘nonlinear solutions’’ exist for flow velocities below the bifurcation points predicted by
linear theory.
(iv) Nevertheless, because the system is restabilized prior to the dynamic instability,

predictions by linear theory are, in fact, quite adequate for flow velocities below U ¼ 8,
which explains why agreement between linear theory and experiments is indeed ‘‘good’’
(Pa.ııdoussis et al. 2002).
(v) The sequence found, i.e., {stability}! {divergence}! {stability}! {oscillation in

the second mode}! {oscillation in the third mode}, is essentially the same as described in
the experiments (Pa.ııdoussis et al. 2002), which is very satisfactory; further discussion is
presented in Section 5.
(vi) Of course, the results shown here are valid quantitatively only for the parameters

chosen. Nevertheless, these parameters are representative of what has been obtained over a
much larger range. A complete investigation may be found in Lopes et al. (1999) and Augu
(1999).

4.2. Dynamics for U > 9

For U > 9, the bifurcation diagram, and hence the dynamical behaviour, becomes more
complicated. Indeed, from Figure 5, it is possible to see many different solution branches,
most of them unstable. The third-mode flutter discussed previously becomes unstable at
U ¼ 9�57 through a pitchfork bifurcation (L ¼ þ1) which breaks the symmetry of the
response with respect to the x-axis. This gives rise to two new solutions, one being
unstable and one stable. Physically, corresponding to the stable solution after U ¼ 9�57,



Figure 6. Shape of the cylinder for various values of the dimensionless flow velocity, U, and for the same
parameters as in Figure 5: (a) first-mode divergence (buckling) at U ¼ 3, (b) second-mode (shape) buckling at
U ¼ 5, (c) second-mode flutter at U ¼ 6, (d) third-mode flutter at U ¼ 9, (e) third-mode flutter around a buckled
position (combination of buckling and flutter leading to an asymmetric response) at U ¼ 11�8, (f) fourth-mode
flutter at U ¼ 13�7, but with f ¼ 0�6 instead of f ¼ 0�7. The last two figures have been computed with N ¼ 12.
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the cylinder oscillates around a new equilibrium, which means that divergence and flutter
coexist in the response. This is similar to what has been observed by Pa.ııdoussis & Semler
(1993b) for the dynamics of a cantilevered pipe with an intermediate spring support,
conveying fluid. The new stable solution also becomes unstable at U ¼ 11�16, so that,
apparently, no periodic solution exists thereafter. However, for U > 9, the bifurcation
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diagram of Figure 5 has been obtained for N ¼ 8 (eight-mode approximation). From a
computational point of view, this has been the maximum that could be used in conjunction
with AUTO. Hence, because ‘‘fourth-mode’’ solutions have been observed by Pa.ııdoussis
et al. (2002), and because a thorough study of Figure 1 intuitively suggests that it might be
possible to obtain them numerically, it has been decided to use FDM to integrate directly
the equations of motion with N ¼ 12 modes. Some sample phase-plane plots are given in
Figure 7 and some additional cylinder shapes in Figure 6(e, f).
At U ¼ 11�8, the response in Figure 7(b) is periodic but nonsymmetric, in contrast to

the case of U ¼ 6 shown in Figure 7(a). Later, a period-doubling bifurcation occurs
(L ¼ 
1) and a double loop can be observed [Figure 7(c)]. This new stable solution again
loses stability through another period-doubling bifurcation, leading to ‘‘period-four’’
oscillations, as illustrated in Figure 7(d) for U ¼ 12�3. However, rather than seeing the
well-known cascade of period-doubling (Pa.ııdoussis & Semler 1993a), here a ‘‘period-
bubbling’’ occurs instead. This leads back to ‘‘period-two’’ [Figure 7(e)] and to ‘‘period-
one’’ oscillations [Figure 7(f)], still in the third mode. Hence, through this sequence of
bifurcations, no quasiperiodic/chaotic motion could be found.
At higher flows, fourth-mode oscillations could be found [e.g., for f ¼ 0�6 and

U ¼ 13�7, as in Figure 6(f)]; the transition from third to fourth mode is supposed to follow
the same pattern as described for the second-to-third mode transition in the section that
follows.

4.3. Dynamics in the Transition Region U � 8�6

In Sections 4.1 and 4.2, most of the dynamics has been captured, explained and illustrated.
Nevertheless, there is a small range of U of interest for which ‘‘atypical’’ behaviour can be
observed, because of the presence of different stable attractors. For clarity, a zoomed
version of the bifurcation diagram of Figure 5 is given in Figure 8(a): not only are the
different periodic solutions clearer (both stable and unstable), but it is also possible to see
that there is a small region for which both second- and third-mode flutter solutions are
stable. Figure 8(a) has been obtained by AUTO, which is not able to take the initial
conditions into account (it simply follows a previously known solution). Hence, FDM has
been used to see if indeed these two solutions could be found. This, in fact, is so. The two
possible attractors for U ¼ 8�50 are displayed in Figure 8(b), obtained with two different
initial conditions, which confirms the accuracy of both (numerical) solutions.
As already mentioned, at U ¼ 8�52, the second-mode flutter becomes unstable through

a torus bifurcation (L ¼ a� ib with jLj ¼ 1). Thus, in theory, quasiperiodic solutions are
possible. This is illustrated in Figure 8(c), where again two different attractors are
displayed (for two sets of initial conditions), for U ¼ 8�53, i.e., just after the bifurcation.
The aperiodic solution is sensitive to the initial conditions and is mainly composed of two
unstable solutions. It is definitely proved, through power spectral density calculations, but
mainly through Poincar!ee sections such as shown in Figure 8(d), that the response
converges either to the third-mode limit cycle or to the ‘‘nonperiodic’’ attractor.
This transition has been observed near regions B of Figure 1, but similar behaviour has

been observed for different parameters in the C regions (a B region corresponds to the
appearance of the third-mode solution before the disappearance of the second-mode
solution, while in regions C the two Hopf bifurcations of the original equilibrium, i.e.,
from a linear point of view, disappear completely). For example, the C region exists for
b ¼ 0�6 and f ¼ 0�8, for which a bifurcation diagram is shown in Figure 9: even though no
solution emerges from the original equilibrium, the dynamics is still very similar. From the
results obtained using either AUTO (stable and unstable solutions shown in Figure 9) and



Figure 7. Phase-plane plots for various values of U demonstrating the transition between third- and fourth-
mode flutter, for the same parameters as in Figure 5: (a) ‘‘symmetric’’ response for U ¼ 6 [corresponds to Figure
6(c)]; (b) ‘‘asymmetric’’ response for U ¼ 11�8 [see Figure 6(e)]; (c) period-two oscillations for U ¼ 12�2; (d)
period-four oscillations for U ¼ 12�3; (e) period-two oscillations with a higher frequency for U ¼ 12�4; (f) third-

mode flutter (‘‘period one’’) for U ¼ 12�8. (b–f) show clearly the ‘‘period-bubbling’’ phenomenon.
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FDM (not shown), the following sequence has been observed: periodic solution at
U ¼ 8�50, quasiperiodic solution at U ¼ 8�67 (corresponding to the discontinuity in the
curve in Figure 9), followed by periodic motions at U ¼ 8�70, and then third-mode flutter



Figure 8. Dynamics in the transition region, U � 8�6: (a) zoomed version of Figure 5 in the region of interest
obtained with AUTO; (b) phase-plane plot for two initial conditions showing the coexistence of the two periodic
solutions, at U ¼ 8�50; (c) phase-plane plot showing the periodic and the nonperiodic attractors, at U ¼ 8�53;

and (d) Poincar!ee section representing the trace of the quasiperiodic attractor.
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at U ’ 9�0. Moreover, the quasiperiodic solution is composed of the two flutter modes,
even though no limit cycle exists concurrently. Consequently, regions B and C are
qualitatively similar since the different transitions are the same.

4.4. LinearMap Revisited

Throughout Sections 4.1–4.3, the nonlinear dynamical behaviour has been described and
is now fully understood. In particular, the transitions between the various possible
solutions have been explained, and the amplitudes and frequencies of the oscillating
cylinder obtained over a wide range parameters. With this understanding, it can be seen
that most of the dynamical behaviour can now ‘‘easily’’ be extracted from Figure 1: the
regions where the cylinder is stable, where it ‘‘buckles’’, where it flutters in the second or
the third mode, and where there exist regions of quasiperiodicity. Consequently, the same
logic may be used to predict the behaviour of the system for U > 13 (approximately, and
for the values of f of interest) by presuming the existence of some fourth-mode solutions
following the third-mode oscillations. Depending on the value of f , it is possible to assume



Figure 9. Bifurcation diagram in region C of Figure 1 for which the two Hopf bifurcations do not exist, in the
neighbourhood of the ‘‘transition zone’’, showing the first generalized coordinate, q1, as a function of U: },
stable solutions, � � �, unstable solutions; b ¼ 0�60, f ¼ 0�8, g ¼ 0, ecN ¼ ecT ¼ 0�5, cb ¼ 1
 f ¼ 0�2,

we ¼ 0�00667, %wwe ¼ 0�00785; cd ¼ 0, w ¼ 1 and h ¼ 0, N ¼ 6.
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that two types of transition leading to a fourth-mode periodic solution are possible: from a
stable equilibrium (for f ¼ 0�5), or from quasiperiodic solutions (for f ¼ 0�7 through
region B where third- and fourth-mode solutions coexist, or for f ¼ 0�75 through region C
where the two Hopf bifurcations do not exist). To verify numerically that these
assumptions are valid, a high enough number of modes need to be used in the
computation: 13 modes are necessary to find the ‘‘appropriate’’ solution in regions B and
C for 125U514. Nevertheless, using 12 modes only, for U ¼ 13�7, f ¼ 0�6 and b ¼ 0�47,
it was possible to find a ‘‘fourth-mode’’ solution, as predicted. Needless to say that getting
one such solution is very (computer) time consuming.
This leads to the conclusion that the bifurcation diagram in Figure 5 is not correct for

U > 11. The correct behaviour is the following: third-mode flutter, followed by period-
doubling and then period-bubbling, quasiperiodic behaviour, and finally fourth-mode
flutter. The same conclusion applies to Figure 6 in Pa.ııdoussis et al. (1999).
One final area to describe is the dynamics in the vicinity of point A where the second-

mode flutter arises before restabilization of the first-mode buckling. This occurs for
example for b50�39 in Figure 2(a). Initially, some ‘‘burst’’ phenomena had been described
with no explanation by Lopes et al. (1999), i.e., regions where no stable periodic solutions
were found to exist. Further investigation has shown that this was due to an insufficient
number of modes in the calculations: with N ¼ 12 and b ¼ 0�2, it is possible to find
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periodic oscillations for U > 5, which means that region A is not much different from a
dynamics point of view (as originally thought).

5. COMPARISON WITH THE EXPERIMENTS

To give a better appreciation of the results obtained, qualitative and quantitative
comparisons between theory and experiment are undertaken. This is presented next.

5.1. Qualitative Comparison

Some typical cylinder shapes, both theoretical and experimental, are presented side by side
in Figure 10, for different values of U and for the same parameters as in Figure 5. The
theoretical shapes have been obtained simply through Galerkin’s method and using both
the computed generalized coordinates, qj, and the shape functions converted back to a
dimensional length. Hence, the length X shown in Figure 10 is dimensional, in order to
display cylinder shapes comparable with the experiment. The flow velocity in the theory
and in the experiment may be slightly different,y which contributes to some of the
discrepancies in amplitude.
Figure 10(a, b) represents the case of a first-mode-shape buckling. The theoretical point

has been chosen (at U ¼ 2�8) such that the amplitude is the largest. This is not necessarily
the case in the experiment, but in general, the theoretical amplitude of the first-mode
buckling is always larger than the experimental one. This may partly be due to the third-
order approximation made when deriving the equation of motion}see Section 2 of Lopes
et al. (2002). Figure 10(c, d) represents the second-mode shape buckling (U ¼ 5�2), and in
this case, for smaller amplitudes, good agreement between theory and experiment is
observed. This is also the case in Figure 10(e, f) where flutter in the second mode is clearly
demonstrated (U ¼ 6�1). Finally, flutter in the third-mode is shown in Figure 10(g, h),
again very similar between theory (at U ¼ 9�1) and experiment.
The equations of motion developed by Lopes et al. (2002) being two dimensional, it is of

course not possible to capture the three-dimensional motions that have been found by
Pa.ııdoussis et al. (2002). Nevertheless, it is quite possible that quasiperiodic solutions found
in theory may develop and may be attracted to a three-dimensional solution with a proper
theoretical model that could exhibit that.

5.2. Quantitative Comparison

Comparisons of thresholds of divergence and second-mode flutter obtainable by linear
theory (which are identical to those determined from bifurcation diagrams) have been
made in Part 1, showing fair agreement with the experiment. Some of these comparisons
are summarized in Table 1 here, where some nonlinear features of the behaviour are also
compared.
In terms of global behavioural (qualitative) characteristics, Figure 10 clearly shows a

parallel between theory and experiment, but a deeper quantitative comparison needs to be
undertaken. From relations (2b) and all the results already given, it is obvious that a lot of
ySome of the parameters are also different: in the theoretical results, g ¼ 0, while in the experiments g ¼ 1�9. Here
it is noted that, since g ¼ 0, the theory in Part 2 and that in Lopes et al. (1999)}see Appendix A of Part 2}are

identical.



Figure 10. Shape of the cylinder: qualitative comparison between theory (a, c, e, g) and experiment (b, d, f, h)
showing successively: buckling of first-mode shape, buckling of second-mode shape, second-mode flutter and

third-mode flutter.
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parameters may have an influence on the dynamics. Taking different criteria into account,
an attempt has been made to reduce the possible range of all parameters by developing a
‘‘behavioural’’ map that would be in accordance with the physical tests. Again, the major
parameters chosen are the flow velocity U, the mass ration b, and free-end shape



Table 1

Flow velocity for the different bifurcation points: comparison between theory and experiment

Phenomenon Theory Experiment

f ¼ 0�7 f ¼ 0�6 Well-streaml.
tail

Medium streaml.
tailecf ¼ 0�5 ecf ¼ 0�25

Divergence threshold, Ucd 2�10 2�50 1�8–2�3 2�0–2�7
Divergence, second-mode shape 4�5 ?* 4�1–4�4 3�9–4�4
Restabilization 4�79 5�02 } }
Second-mode flutter threshold, Ucf 4�82 6�03 5�1–5�4 5�1–5�7
Quasiperiodic, U 8�50 } 6�9–7�1 7�2–7�4y

Third-mode flutter threshold, U 8�60 8�91 7�0 7�0–7�5y

*Signifies uncertainty as to its existence.
yOr sometimes none.
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parameter f . The different criteria are: the ‘‘qualitative route’’ (stability–divergence–
flutter–quasiperiodic solution), the bifurcation values for U, the amplitude of motion
(both static and dynamic), and the period of oscillation. A detailed analysis may be found
in Augu (1999) where it is shown that, to have ‘‘good’’ agreement, the following two
conditions need to be satisfied: 0�75f50�8, and 0�465b50�6. The mass parameter b can
be measured precisely, and for the cylinders used in Pa.ııdoussis et al. (2002), it is equal to
b ¼ 0�47; so, this parameter at least is in the determined range. The parameter f , however,
is more difficult to estimate; so, two values are specified in Table 1 for comparison
purposes, one even outside the determined range.
For the purposes of Table 1, the free-end shapes #115, #15 and #2 (see Part 1) are

considered to be ‘‘well streamlined’’, while #91, #35 and #92 to be ‘‘medium well
streamlined’’.
It is seen that the thresholds of divergence and second-mode flutter are in reasonable

agreement, although the theoretically predicted restabilization has not been observed;y in
practice, in these experiments, the system never really becomes totally straight before the
onset of second-mode flutter, although the deformation is of second-mode shape.
It is also seen that third-mode flutter in the experiments occurs at considerably lower U

than predicted, and so does the quasiperiodic behaviour. In the experiments,
quasiperiodicity manifests itself as a ‘‘hesitation’’ between second- and third-mode
flutter}in appearance similar to chaotic behaviour; in the power spectral density (PSD),
there are two or more frequency peaks of similar amplitude. In some cases, quasiperiodic
behaviour is not clear or does not occur and this is marked as ‘‘sometimes none’’ in the
table.
Here it should be remarked that the theoretical calculations with N ¼ 6 are at the limit

of being reliable for high values of U (e.g., U > 7). It has been found, by conducting
calculations with fewer degrees of freedom, that increasing N would result in lower values
for the bifurcation values of U for the quasiperiodic behaviour and for the third-mode
flutter (U > 7).
y In this respect, it should be said that for slightly different parameters than those chosen, one can obtain

theoretical results in which there is no restabilization. E.g., in Figure 2, this can be done by reducing b, which
would be nonphysical, since the value of b is certain; however, the same can arise by varying other system
parameters, values for which are less well known.



Table 2

Comparison between theory and experiment of the maximum nondimensional tip amplitudes and
the nondimensional frequency (denoted as Hz*) of limit-cycle oscillation

Quantity Theory Experiment

Max. amplitude at divergence, Zð1Þmax 0�25 0�10–0�12
Max. second-mode flutter amplitude, Zð1Þmax 0�15 0�08–0�10
Max. third-mode flutter amplitude, Zð1Þmax 0�11 0�08–0�10
Second-mode limit-cycle frequency (Hz*) 2�5 �2�7
Third-mode limit-cycle frequency (Hz*) 6�7 �6�7
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Another discrepancy between theory and experiment is that in the latter a hysteresis has
been observed in the onset of second-mode flutter; this has not been reproduced in the
theory, the bifurcation always being supercritical.
Table 2 shows a comparison between the dimensionless amplitudes and the

dimensionless limit-cycle flutter frequencies. It can be seen that the theoretical amplitudes
are larger than the experimental ones, but the frequencies, both for second- and third-
mode flutter, are in good agreement. It should be noted that the amplitudes are more
difficult to measure than the frequencies.

6. CONCLUSION

The dynamics of cantilevered slender cylinders in axial flow has been examined anew in
this three-part study. In Part 1, the experimental observations are described, summarizing
the results for some older experiments and those from a new experimental programme.
Then, the mechanisms involved in the two principal modes via which the system loses
stability, divergence and flutter, have been clarified. Based on the insights gained thereby,
the theoretically predicted physical dynamics of the system, reasoned rather than
calculated, was found to agree with that observed experimentally. Part 2 is entirely
devoted to obtaining a nonlinear equation of motion via Hamilton’s principle, sufficient
for the study of weakly nonlinear motions.
In Part 3, this paper, the linearized and nonlinear versionsy of the theoretical model are

utilized to explore the bifurcational behaviour and nonlinear dynamics of the system.
In terms of linear dynamics, the main bifurcations arising, as the flow velocity is

increased, are: divergence in the first mode, restabilization, but not always, and then second-
mode flutter, followed by higher-mode divergence and flutter, sometimes concurrently.
The effect of some of the key parameters affecting these bifurcations were explored. The

effect of the free-end shape was investigated first by varying the free-end slenderness
parameter f and the associated base drag coefficient cb (Figure 1). Then, the effect of
varying f and also the transverse and longitudinal frictional coefficients ecN and ecT was
looked into, in the latter case varying ecN and cN=cT (Figures 3 and 4). It is clear from
Figures 1, 3 and 4 that for optimum stability the free end should be blunt (f should be
small) and ecN should be large; in practice, meaning that e ¼ L=D should be large, which
may appear to be counter-intuitive. The effect of varying cN=cT alone is more intricate,
ySome calculations were conducted with the earlier, slightly different version of the nonlinear theory}different

insofar as g- and h-related terms are concerned (Appendix A of Part 2). Any effects on the results should be

minimal, since h ¼ 0 and g ¼ 1�9, which is small (g beginning to play a significant role if it is of order 10 or larger).
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and it is discussed in Section 3.3. Finally, the effect of varying the mass ratio b was also
explored. Although it does not have a dramatic effect on stability, b is nevertheless one of
the key parameters controlling whether there is restabilization of the system prior to the
onset of flutter.
The system was then examined from the nonlinear point of view, using the tools of

nonlinear dynamics theory. One important result obtained is that post-divergence flutter
does materialize [cf. Pa.ııdoussis (1998, Chapter 5) for the opposite result], whether there is
post-divergence restabilization or not.
Then, the nonlinear dynamics was explored for one particular system, with parameters

close to those of the experimental system. It is found that the cylinder first loses stability by
divergence in its first mode, the amplitude of which increases with flow; this is gradually
transformed to divergence of predominantly second-mode shape, before the system is
restabilized}in most but not all cases. At slightly higher flow velocities, the system loses
stability by second-mode flutter, which at still higher flows is succeeded by third-mode
flutter. The transition between these two forms of flutter encompasses a zone of aperiodic
or quasiperiodic motions. It is of special interest that multiple solutions may coexist in
some parameter ranges, and they depend on initial conditions.
Both linear aspects (the critical flow velocities for the principal bifurcations) and

nonlinear aspects (amplitudes, limit-cycle frequencies, transition between the various
dynamical states, quasiperiodicity) are compared with experimental observations.
Broadly, theory and experiment are in good qualitative and reasonably good quantitative
agreement. The key bifurcations are predicted within 7–25%, while the amplitudes to
�100% only, and the limit-cycle frequencies (surprisingly) to 7%. In this regard, it should
be said that the theoretical behaviour, especially at higher flows was found to require a
high number of Galerkin modes, in fact more than that could be comfortably
accommodated in the numerical calculations. Yet, some aspects of observed behaviour
(e.g., hysteresis) are not reproduced by theory.
It is concluded that the results obtained in this study lend confidence that the theoretical

model is sound, even though improvements may be desirable.
In the theoretical model, as developed in Part 2, the flexible slender body is considered

to consist of (i) a long, uniform cylindrical part, and (ii) a short tapering end-piece
attached to the free end thereof, with these two components being treated separately and
somewhat differently. As pointed out by one of the referees, with whom we agree, it would
be interesting to redo the theoretical model, treating the system as a single flexible body of
nonuniform cross-section, by means of classical slender-body theory [see, e.g., Bisplinghoff
et al. (1955), Dowell et al. (1995), Pa.ııdoussis (2002, Chapter 8)]. This model could be used
to obtain predictions which would then be compared with the statements made on energy
transfer mechanisms (Part 1), where the tapering end has been shown to play an important
r #oole. The viscous terms could then be incorporated into the model in a similar manner as
done in Part 2. Work in this direction is underway.
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